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a new chiral Rh(II) catalyst for enantioselective amidation
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Abstract—Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate], characterized by substitution of chlorine atoms for
four hydrogen atoms on the phthalimido group in the parent dirhodium(II) complex has been found to be well suited for
enantioselective amidation of benzylic C�H bonds with [(4-nitrophenyl)sulfonylimino]phenyliodinane. The observed enantioselec-
tivity of up to 84% ee is the highest reported to date for dirhodium(II) complex-catalyzed C�H amidations. © 2002 Elsevier
Science Ltd. All rights reserved.

Pioneered by the groups of Breslow1 and Mansuy2 in
the early 1980s, transition metal-catalyzed nitrene
transfer reactions with (arenesufonylimino)phenylio-
dinanes have been recognized as potentially powerful
methods for the synthesis of aziridines, amides, or
amines.3 Consequently, a great deal of effort has
recently been directed toward the development of enan-
tioselective version of these catalytic processes. While
high levels of enantiocontrol in aziridinations have
already been achieved using well-designed chiral cata-
lysts,4 such as Cu(I)–bis(oxazoline),5 Cu(I)–diimine,6

Mn(III)–salen7 or Mn(III)–porphyrin8 complexes, only
a few examples of enantioselective amidation of C�H
bonds have been reported. Müller and co-workers were
the first to demonstrate asymmetric induction (up to
33% ee) in the reaction of [(4-nitrophenyl)sulfonyl-
imino]phenyliodinane, NsN�IPh (1, Ns=4-NO2C6-
H4SO2) and indan (2) employing dirhodium(II) tetra-
kis[(R)-binaphthylphosphate], Rh2(R-BNP)4, as a chiral
catalyst.9 Thereafter, Che and co-workers explored ami-
dation of a series of benzylic hydrocarbons with
TsN�IPh in the presence of chiral Ru(III)- or Mn(III)-
porphyrin-catalysts, wherein modest enantioselectivity
of 54% ee was obtained with 1-ethylnaphthalene.8b,10

More recently, Katsuki and co-worker have disclosed
that a chiral Mn(III)–salen complex modified with an
electron-withdrawing group is an efficient catalyst for
the reaction of TsN�IPh with various allylic and ben-
zylic hydrocarbons, and it displays the highest degree of

enantioselectivity (89% ee) known for this type of trans-
formations.11 In recent years we have achieved high
levels of enantiocontrol in a range of catalytic Rh(II)–
carbene transformations by developing dirhodium(II)
carboxylate catalysts, which incorporate N-phthaloyl-
or N-benzene-fused-phthaloyl-(S)-amino acids as
bridging ligands.12 Using the analogy between carbenes
and nitrenes, we now address the issue of enantiocon-
trol in Rh(II)-catalyzed C–H amidation reactions.

Following the pioneering work of Müller,9 we initially
explored C–H insertion of 1 with 5 equiv. of 2 in the
presence of 2 mol% of our chiral dirhodium(II) car-
boxylates (Table 1).13 The use of tetrakis[N-phthaloyl-
(S)-phenylalaninate], Rh2(S-PTPA)4, in dichloro-
methane at 0°C provided amidation product 3 in 68%
yield (entry 1).14 The enantioselectivity in this reaction
was determined to be 15% ee by HPLC analysis (Daicel
Chiralpak AD).15 The preferred absolute stereochem-
istry of 3 [[� ]D24 +5.67 (c 1.07, CHCl3)] was established
as R by comparing the sign of the optical rotation with
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(R)-3 [[� ]D25 +34.5 (c 1.10, CHCl3)], which was prepared
from (R)-1-aminoindan16 (p-NO2C6H4SO2Cl, aq.
NaOH–CH2Cl2, 0°C, 1 h, 76%). We next screened other
chiral dirhodium(II) carboxylates, Rh2(S-PTA)4,
Rh2(S-PTV)4, and Rh2(S-PTTL)4, derived from N-
phthaloyl-(S)-alanine, -valine, and -tert-leucine, respec-
tively (entries 2–4). While a uniform sense of
asymmetric induction was observed in all cases, the
highest levels of enantioselectivity were only 27 and
28% ee obtained with Rh2(S-PTA)4 and Rh2(S-PTTL)4,
respectively (entries 2 and 4).17 Focusing on these two
catalysts, we then evaluated the abilities of Rh2(S-
BPTA)4 and Rh2(S-BPTTL)4 which are characterized
by an extension of the phthalimido group with one
more benzene ring.12b Surprisingly, the use of Rh2(S-
BPTA)4 markedly diminished product yield,18 although
the drop in enantioselectivity was slight (entry 5). The
use of Rh2(S-BPTTL)4 resulted in similar levels of
product yield and enantioselectivity as found with
Rh2(S-PTTL)4 (entry 6).

It has recently been demonstrated that ligand modifica-
tion by incorporating electron-donating19 or electron-
withdrawing11,20 substituents can have a profound
influence on the rate and enantioselectivity of catalytic
asymmetric reactions. Based on these precedents, we
envisaged that the development of dirhodium(II) car-
boxylates characterized by substitution of electron-
withdrawing groups for four hydrogen atoms on the
phthalimido group could facilitate the formation and
ensuing C–H insertion of the presumed Rh(II)-com-

plexed sulfonyl nitrene intermediate, leading to further
enhancement of the enantioselectivity.21 Thus, new
dirhodium(II) carboxylates, Rh2(S-TFPTTL)4 and
Rh2(S-TCPTTL)4 were prepared from Rh2(OAc)4 by
ligand exchange reaction22 with N-tetrafluorophthaloyl-
and N-tetrachlorophthaloyl-(S)-tert-leucines,23 respec-
tively.24,26 Indeed, we were gratified to find that Rh2(S-
TFPTTL)4 and Rh2(S-TCPTTL)4 exhibited even higher
enantioselectivities (54% and 66% ee, respectively) than
the unsubstituted parent dirhodium(II) complex,
Rh2(S-PTTL)4 (entries 7 and 8). Using Rh2(S-
TCPTTL)4 as a catalyst, we then studied the effects of
solvent and temperature on enantioselectivity. The sol-
vent survey revealed that dichloromethane was the opti-
mal solvent for this transformation. While benzene and
benzotrifluoride exhibited nearly the same yields and
enantioselectivities as dichloromethane, reaction times
to complete the reaction in these solvents were extended
(entries 9 and 10). Toluene was found to be the least
effective due to the formation of substantial amounts
(30%) of N-benzyl-4-nitrobenzenesulfonamide arising
from the C�H insertion into a methyl group of toluene
(entry 11). When the reaction in dichloromethane was
conducted at −23°C, the enantioselectivity was
increased to 70% ee without affecting product yield
(entry 12). Although reaction times at −23°C were
extended (6 h) compared to those at 0°C (0.5 h), much
longer reaction times (24 h) were necessary with the
case of Rh2(S-PTTL)4 where product yield was sub-
stantially reduced (entry 13). These results strongly
suggest that the chlorinated ligand did confer higher

Table 1. Enantioselective amidation of indan (2) with NsN�IPh (1) catalyzed by chiral dirhodium(II) complexesa

Time (h) Ee (%)cTemp. (°C)SolventRh(II) catalystEntry Yield (%)b

R

Bn 15Rh2(S-PTPA)4 681 0.50CH2Cl2
Rh2(S-PTA)4 Me CH2Cl22 0 0.5 75 27

0 0.53 69Rh2(S-PTV)4 15iPr CH2Cl2
0 0.54 79Rh2(S-PTTL)4 28tBu CH2Cl2

25230.50CH2Cl25 MeRh2(S-BPTA)4

CH2Cl2 0 0.5 80 336 tBuRh2(S-BPTTL)4

7 54890.50CH2Cl2(X=F)tBuRh2(S-TFPTTL)4

870.50CH2Cl2 66(X=Cl)tBuRh2(S-TCPTTL)48
10 3.5 899 63Rh2(S-TCPTTL)4

tBu (X=Cl) Benzene
Rh2(S-TCPTTL)4

tBu (X=Cl) CF3C6H510 0 2.0 81 59
11 Rh2(S-TCPTTL)4

tBu (X=Cl) Toluene 0 3.5 57d 62
6.012 −23CH2Cl2(X=Cl)tBu 7082Rh2(S-TCPTTL)4

CH2Cl2
tBuRh2(S-PTTL)4 −2313 24.0 53 27

Rh2(S-TCPTTL)4
tBu (X=Cl) CH2Cl214 −40 12.0 51 73

a Reactions were carried out as follows: 1 (40.4 mg, 0.10 mmol) was added in one portion to a solution of 2 (59 mg, 0.5 mmol, 5 equiv.) and Rh(II)
catalyst (0.002 mmol, 2 mol%) in the indicated solvent (1.0 mL) at the indicated temperature under argon.

b Isolated yield based on 1.
c Determined by HPLC [column, Daicel Chiralpak AD; eluent, 3:1 n-hexane:i-PrOH; flow rate, 1.0 mL/min; retention time 11.8 min [(R)-3] and

16.7 min [(S)-3]].
d BnNHNs (ca. 30%) was formed by way of C–H insertion reaction of 1 with a methyl group of toluene.
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Table 2. Enantioselective intermolecular C�H amidation
with NsN�IPh (1) catalyzed by Rh2(S-TCPTTL)4

tions. In contrast to these results, the present protocol
was found to be less effective for ethylbenzene (7) and
cyclohexene (8).

In summary, we have demonstrated that Rh2(S-
TCPTTL)4 developed through the electronic tuning of
Rh2(S-PTTL)4 is effective for enantioselective amida-
tion of C�H bonds, wherein this catalyst has been
found to exhibit even higher reactivity and enantiose-
lectivity (up to 84% ee) than the parent dirhodium(II)
complex.31 Further application of this catalyst to enan-
tioselective aziridinations as well as mechanistic and
stereochemical studies are currently in progress.
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